
WHITE PAPER

BEST PRACTICES FOR
OPTIMIZING YOUR DBT AND
SNOWFLAKE DEPLOYMENT

WHITE PAPER 2

Introduction	 	 3

What	Is	Snowflake?	 3

 Snowflake architecture 3

 Benefits of using Snowflake 4

What	Is	dbt?	 	 5

 dbt Cloud 5

Customer	Use	Case	 6

Optimizing	Snowflake	 6

 Automated resource optimization
 for dbt query tuning 8

 - Automatic clustering 8

 - Materialized views 8

 - Query acceleration services 9

 Resource management and monitoring 10

 - Auto-suspend policies 10

 - Resource monitors 11

 - Naming conventions 12

 Role-based access control (RBAC) 13

 - Monitoring 13

 - Monitoring credit usage 15

 - Monitoring storage usage 15

 Individual dbt workload elasticity 17

 - Scaling up for performance 18

 - Scaling out for concurrency 20

 Writing effective SQL statements 20

 - Query order of execution 20

 - Applying filters as early as possible 21

 - Querying only what you need 21

 - Joining on unique keys 21

 - Avoiding complex functions and
 UDFs in WHERE clauses 22

TABLE OF CONTENTS

Optimizing	dbt	 22

 Use environments 22

 Use the ref() function and sources 24

 Write modular, DRY code 25

 Use dbt tests and documentation 26

 Use packages 27

 Be intentional about your materializations 27

 Optimize for scalability 28

 - Plan for project scalability from the outset 28

 - Follow a process for upgrading dbt versions 28

Conclusion	 	 28

Contributors	 	 29

Reviewers	 	 29

Document	Revisions	 29

About	dbt	Labs	 30

About	Snowflake	 30

WHITE PAPER 3

analytics data platform as a service, billed based on
consumption. It is faster, easier to use, and far more
flexible than traditional data warehouse offerings.

Snowflake uses a SQL database engine and a unique
architecture designed specifically for the cloud. There
is no hardware (virtual or physical) or software for you
to select, install, configure, or manage. In addition,
ongoing maintenance, management, and tuning are
handled by Snowflake.

All components of Snowflake’s service (other than
optional customer clients) run in a secure cloud
infrastructure.

Snowflake is cloud-agnostic and uses virtual compute
instances from each cloud provider (Amazon
EC2, Azure VM, and Google Compute Engine). In
addition, it uses object or file storage from Amazon
S3, Azure Blob Storage, or Google Cloud Storage
for persistent storage of data. Due to Snowflake’s
unique architecture and cloud independence, you can
seamlessly replicate data and operate from any of
these clouds simultaneously.

SNOWFLAKE ARCHITECTURE

Snowflake’s architecture is a hybrid of traditional
shared-disk database architectures and shared-
nothing database architectures. Similar to shared-disk
architectures, Snowflake uses a central data repository
for persisted data that is accessible from all compute
nodes in the platform. But similar to shared-nothing
architectures, Snowflake processes queries using
massively parallel processing (MPP) compute clusters
where each node in the cluster stores a portion of the
entire data set locally. This approach offers the data
management simplicity of a shared disk architecture,
but with the performance and scale-out benefits of a
shared-nothing architecture.

As shown in Figure 1, Snowflake’s unique architecture
consists of three layers built upon a public cloud
infrastructure:

• Cloud services: Cloud services coordinate activities
across Snowflake, processing user requests from login
to query dispatch. This layer provides optimization,
management, security, sharing, and other features.

• Multi-cluster compute: Snowflake processes queries
using virtual warehouses. Each virtual warehouse is
an MPP compute cluster composed of multiple compute
nodes allocated by Snowflake from Amazon EC2,
Azure VM, or Google Cloud Compute. Each virtual

INTRODUCTION

Companies in every industry acknowledge that
data is one of their most important assets. And yet,
companies consistently fall short of realizing the
potential of their data.

Why is this the case? One key reason is the
proliferation of data silos, which create expensive and
time-consuming bottlenecks, erode trust, and render
governance and collaboration nearly impossible.

This is where Snowflake and dbt come in.

The Snowflake Data Cloud is one global, unified
system connecting companies and data providers to
relevant data for their business. Wherever data or
users live, Snowflake delivers a single and seamless
experience across multiple public clouds, eliminating
previous silos.

dbt is a transformation workflow that lets teams
quickly and collaboratively deploy analytics code
following software engineering best practices such as
modularity, portability, CI/CD, and documentation.
With dbt, anyone who knows SQL can contribute to
production-grade data pipelines.

By combining dbt with Snowflake, data teams can
collaborate on data transformation workflows while
operating out of a central source of truth. Snowflake
and dbt form the backbone of a data infrastructure
designed for collaboration, agility, and scalability.

When Snowflake is combined with dbt, customers
can operationalize and automate Snowflake’s
hallmark scalability within dbt as part of their analytics
engineering workflow. The result is that Snowflake
customers pay only for the resources they need, when
they need them, which maximizes efficiency and
results in minimal waste and lower costs.

This paper will provide some best practices for using
dbt with Snowflake to create this efficient workflow.

WHAT IS SNOWFLAKE?

Snowflake’s Data Cloud is a global network where
thousands of organizations mobilize data with near-
unlimited scale, concurrency, and performance. Inside
the Data Cloud, organizations have a single unified
view of data so they can easily discover and securely
share governed data, and execute diverse analytics
workloads. Snowflake provides a tightly integrated

https://docs.snowflake.com/en/user-guide/intro-key-concepts.html
https://www.snowflake.com/

WHITE PAPER 4

warehouse has independent compute resources, so
high demand in one virtual warehouse has no impact on
the performance of other virtual warehouses. For more
information, see “Virtual Warehouses” in the Snowflake
documentation.

• Centralized storage: Snowflake uses Amazon S3,
Azure Blob Storage, or Google Cloud Storage to
store data into its internal optimized, compressed,
columnar format using micro-partitions. Snowflake
manages the data organization, file size, structure,
compression, metadata, statistics, and replication. Data
objects stored by Snowflake are not directly visible by
customers, but they are accessible through SQL query
operations that are run using Snowflake.

BENEFITS OF USING SNOWFLAKE

Snowflake is a cross-cloud platform, which means
there are several things users coming from a more
traditional on-premises solution will no longer need to
worry about:

• Installing, provisioning, and maintaining hardware and
software: All you need to do is create an account and
load your data. You can then immediately connect from
dbt and start transforming data.

• Determining the capacity of a data warehouse:
Snowflake has scalable compute and storage, so it can
accommodate all of your data and all of your users.
You can adjust the count and size of your virtual
warehouses to handle peaks and lulls in your data
usage. You can even turn your warehouses completely
off to stop incurring costs when you are not using them.

• Learning new tools and expanded SQL capabilities:
Snowflake is fully compliant with ANSI-SQL, so you can
use the skills and tools you already have. Snowflake
provides connectors for ODBC, JDBC, Python,
Spark, and Node.js, as well as web and command-line
interfaces. On top of that, Snowpark is an initiative that
will provide even more options for data engineers to
express their business logic by directly working with
Scala, Java, and Python Data Frames.

• Siloed structured and semi-structured data: Business
users increasingly need to work with both traditionally
structured data (for example, data in VARCHAR, INT,
and DATE columns in tables) as well as semi-structured
data in formats such as XML, JSON, and Parquet.
Snowflake provides a special data type called VARIANT
that enables you to load your semi-structured data
natively and then query it with SQL.

• Optimizing and maintaining your data: You can run
analytic queries quickly and easily without worrying
about managing how your data is indexed or distributed
across partitions. Snowflake also provides built-in data
protection capabilities, so you don’t need to worry
about snapshots, backups, or other administrative tasks
such as running VACUUM jobs.

• Securing data and complying with international privacy
regulations: All data is encrypted when it is loaded into
Snowflake, and it is kept encrypted at all times when
at rest and in transit. If your business requirements
include working with data that requires HIPAA, PII,
PCI DSS, FedRAMP compliance, and more, Snowflake’s
Business Critical edition and higher editions can
support these validations.

Figure 1: Three layers of Snowflake’s architecture

https://docs.snowflake.com/en/user-guide/warehouses.html

WHITE PAPER 5

• Sharing data securely: Snowflake Secure Data Sharing
enables you to share near real-time data internally and
externally between Snowflake accounts without copying
and moving data sets. Data providers provide secure
data shares to their data consumers, who can view
and seamlessly combine the data with their own data
sources. Snowflake Data Marketplace includes many
data sets that you can incorporate into your existing
business data—such as data for weather, demographics,
or traffic—for greater data-driven insights.

WHAT IS DBT?

When data teams work in silos, data quality suffers.
dbt provides a common space for analysts, data
engineers, and data scientists to collaborate on
transformation workflows using their shared
knowledge of SQL.

By applying proven software development best
practices such as modularity, portability, version
control, testing, and documentation, dbt’s analytics
engineering workflow helps data teams build trusted
data, faster.

dbt transforms the data already in your data
warehouse. Transformations are expressed in simple
SQL SELECT statements and, when executed, dbt

compiles the code, infers dependency graphs, runs
models in order, and writes the necessary DDL/DML
to execute against your Snowflake instance. This
makes it possible for users to focus on writing SQL and
not worry about the rest. For writing code that is DRY
(don't repeat yourself), users can use Jinja alongside
SQL to express repeated logic using control structures
such as loops and statements.

DBT CLOUD

dbt Cloud is the fastest and most reliable way to
deploy dbt. It provides a centralized experience for
teams to develop, test, schedule, and investigate data
models—all in one web-based UI (see Figure 2). This
is made possible through features such as an intuitive
IDE, automated testing and documentation, in-app
scheduling and alerting, access control, and a native
Git integration.

dbt Cloud also eliminates the setup and
maintenance work required to manage data
transformations in Snowflake at scale. A turn-key
adapter establishes a secure connection built to
handle enterprise loads, while allowing for fine-
grained policies and permissions.

Figure 2: dbt Cloud provides a centralized experience for developing, testing, scheduling, and investigating data models.

WHITE PAPER 6

CUSTOMER USE CASE

When Ben Singleton joined JetBlue as its Director of
Data Science & Analytics, he stepped into a whirlpool
of demands that his team struggled to keep up with.
The data team was facing a barrage of concerns and
low stakeholder trust.

“My welcome to JetBlue involved a group of senior
leaders making it clear that they were frustrated with
the current state of data,” Singleton said.

What made matters worse was the experts were not
empowered to take ownership of their own data due
to the inaccessibility of the data stack.

As Singleton dug, he realized the solution wasn’t
incremental performance improvement but rather
a complete infrastructure overhaul. By pairing
Snowflake with dbt, JetBlue was able to transform
the data team from being a bottleneck to being the
enablers of a data democracy.

“Every C-level executive wants more questions
answered with data, they want that data faster, and
they want it in many different ways. It’s critical for
us,” Singleton said. All of this was done without an
increase in infrastructure costs. To read more about
JetBlue’s success story, see the JetBlue case study.¹

The remainder of this paper dives into the exact
dbt and Snowflake best practices that JetBlue and
thousands of other clients have implemented to
optimize performance.

OPTIMIZING SNOWFLAKE

Your business logic is defined in dbt, but dbt
ultimately pushes down all processing to Snowflake.
For that reason, optimizing the Snowflake side of
your deployment is critical to maximizing your query
performance and minimizing deployment costs. The
table on the following page summarizes the main
areas and relevant best practices for Snowflake and
serves as a checklist for your deployment.

“Every C-level executive

wants more questions

answered with data, they want

that data faster, and they want

it in many different ways.

It’s critical for us.”

Ben Singleton
Director of Data Science

& Analytics, JetBlue

WHITE PAPER 7

AREA BEST PRACTICES WHY

Automated resource
optimization for dbt
query tuning

Automatic clustering Automated table maintenance

Materialized views Pre-compute complex logic

Query acceleration services Automated scale out part of query
to speed up performance without
resizing warehouse

Resource management
and monitoring

Auto-suspend policies Automatic stop of warehouse to
reduce costs

Resource monitors Control of resource utilization
and cost

Naming conventions Ease of tracking, allocation,
and reporting

Role-based access control Governance and cost allocation

Monitoring Resource and cost
consumption monitoring

Individual dbt
workload elasticity

Scaling up for performance Resizing warehouse to increase
performance for complex workload

Scaling out for concurrency Spinning up additional warehouses
to support a spike in concurrency

Writing effective
SQL statements

Applying filters as early as possible Optimizing row operations and
reducing records in subsequent
operations

Querying only what you need Selecting only the columns needed
to optimize columnar store

Joining on unique keys Optimizing JOIN operations and
avoiding cross-joins

Avoiding complex functions and
UDFs in WHERE clauses

Pruning

WHITE PAPER 8

• You no longer need to run manual operations to re-
cluster data.

• Incremental clustering is done as new data arrives or a
large amount of data is modified.

• Data pipelines consisting of DML operations (INSERT,
DELETE, UPDATE, MERGE) can run concurrently and
are not blocked.

• Snowflake performs automatic reclustering in the
background, and you do not need to specify a
warehouse to use.

• You can resume and suspend automatic clustering on
a per-table basis, and you are billed by the second for
only the compute resources used.

• Snowflake internally manages the state of clustered
tables, as well as the resources (servers, memory, and
so on) used for all automated clustering operations. This
allows Snowflake to dynamically allocate resources as
needed, resulting in the most efficient and effective
reclustering. The Automatic Clustering service does
not perform any unnecessary reclustering. Reclustering
is triggered only when a table would benefit from the
operation.

dbt supports table clustering on Snowflake. To
control clustering for a table or incremental model,
use the cluster_by configuration. Refer to the
Snowflake configuration guide for more details.

Materialized views

A materialized view is a pre-computed data set
derived from a query specification (the SELECT in
the view definition) and stored for later use. Because
the data is pre-computed, querying a materialized
view (MV) is faster than executing a query against the
base table of the view. This performance difference
can be significant when a query is run frequently or
is sufficiently complex. As a result, MVs can speed
up expensive aggregation, projection, and selection
operations, especially those that run frequently and
that run on large data sets. dbt does not support
MVs out of the box as materializations; therefore,
we recommend using custom materializations
as a solution to achieve similar purposes. The
dbt materializations section in this white paper
explains how MVs can be used in dbt via a custom
materialization.

AUTOMATED RESOURCE OPTIMIZATION
FOR DBT QUERY TUNING

Performance and scale are core to Snowflake.
Snowflake’s functionality is designed such that
users can focus on core analytical tasks instead of
on tuning the platform or investing in complicated
workload management.

Automatic clustering

Traditionally, legacy on-premises and cloud data
warehouses relied on static partitioning of large
tables to achieve acceptable performance and enable
better scaling. In these systems, a partition is a unit
of management that is manipulated independently
using specialized DDL and syntax; however, static
partitioning has a number of well-known limitations,
such as maintenance overhead and data skew, which
can result in disproportionately sized partitions. It
was the user’s responsibility to constantly optimize
the underlying data storage. This involved work
such as updating indexes and statistics, post-
load vacuuming procedures, choosing the right
distribution keys, dealing with slow partitions due to
growing skews, and manually reordering data as new
data arrived or got modified.

In contrast to a data warehouse, Snowflake
implements a powerful and unique form of
partitioning called micro-partitioning, which delivers
all the advantages of static partitioning without the
known limitations, as well as providing additional
significant benefits. Snowflake scalable, multi-
cluster virtual warehouse technology automates
the maintenance of micro-partitions. This means
Snowflake efficiently and automatically executes
the re-clustering in the background. There’s no need
to create, size, or resize a virtual warehouse. The
compute service continuously monitors the clustering
quality of all registered clustered tables. It starts with
the most unclustered micro-partitions and iteratively
performs the clustering until an optimal clustering
depth is achieved.

With Snowflake, you can define clustered tables if
the natural ingestion order is not sufficient in the
presence of varying data access patterns. Automatic
clustering is a Snowflake service that seamlessly and
continually manages all reclustering, as needed, of
clustered tables. Its benefits include the following:

https://docs.snowflake.com/en/user-guide/views-materialized.html

WHITE PAPER 9

Snowflake’s compute service monitors the base
tables for MVs and kicks off refresh statements for
the corresponding MVs if significant changes are
detected. This maintenance process of all dependent
MVs is asynchronous. In scenarios where a user
is accessing an MV that has yet to be updated,
Snowflake’s query engine will perform a combined
execution with the base table to always ensure
consistent query results. Similar to Snowflake’s
automatic clustering with the ability to resume or
suspend per table, a user can resume and suspend
the automatic maintenance on a per-MV basis. The
automatic refresh process consumes resources
and can result in increased credit usage. However,
Snowflake ensures efficient credit usage by billing
your account only for the actual resources used.
Billing is calculated in one-second increments.

You can control the cost of maintaining MVs by
carefully choosing how many views to create,
which tables to create them on, and each view’s
definition (including the number of rows and columns
in that view).

You can also control costs by suspending or resuming
a MV; however, suspending maintenance typically
only defers costs rather than reducing them. The
longer that maintenance has been deferred, the more
maintenance there is to do.

If you are concerned about the cost of maintaining
MVs, we recommend you start slowly with this
feature (that is, create only a few MVs on selected
tables) and monitor the costs over time.

It’s a good idea to carefully evaluate these guidelines
based on your dbt deployment to see if querying
from MVs will boost performance compared to base
tables or regular views without cost overhead.

Query acceleration services

Sizing the warehouse just right for a workload is
generally a hard trade-off between minimizing
cost and maximizing query performance. You’ll
usually have to monitor, measure, and pick an
acceptable point in this price-performance spectrum
and readjust as required. Workloads that are
unpredictable in terms of either the number of
concurrent queries or the amount of data required for
a given query make this challenging.

MVs are particularly useful when:

• Query results contain a small number of rows and/or
columns relative to the base table (the table on which
the view is defined)

• Query results contain results that require significant
processing, including:
 – Analysis of semi-structured data
 – Aggregates that take a long time to calculate

• The query is on an external table (that is, data sets
stored in files in an external stage), which might have
slower performance compared to querying native
database tables

• The view’s base table does not change frequently

In general, when deciding whether to create an MV
or a regular view, use the following criteria:

• Create an MV when all of the following are true:

– The query results from the view don’t change often.
This almost always means that the underlying/base
table for the view doesn’t change often or at least the
subset of base table rows used in the MV
doesn’t change often.

– The results of the view are used often
(typically, significantly more often than the query
results change).

– The query consumes a lot of resources. Typically,
this means that the query consumes a lot of
processing time or credits, but it could also mean
that the query consumes a lot of storage space for
intermediate results.

• Create a regular view when any of the following
are true:

– The results of the view change often.

– The results are not used often (relative to the rate at
which the results change).

– The query is not resource-intensive so it is not costly
to re-run it.

These criteria are just guidelines. An MV might
provide benefits even if it is not used often—
especially if the results change less frequently than
the usage of the view.

There are also other factors to consider when
deciding whether to use a regular view or an MV. One
such example is the cost of storing and maintaining
the MV. If the results are not used very often (even
if they are used more often than they change), the
additional storage and compute resource costs might
not be worth the performance gain.

WHITE PAPER 10

RESOURCE MANAGEMENT AND MONITORING

A virtual warehouse consumes Snowflake credits
while it runs, and the amount consumed depends
on the size of the warehouse and how long it
runs. Snowflake provides a rich set of resource
management and monitoring capabilities to help
control costs and avoid unexpected credit usage, not
just for dbt transformation jobs but for all workloads.

Auto-suspend policies
The very first resource control that you should
implement is setting auto-suspend policies for each
of your warehouses. This feature automatically
stops warehouses after they’ve been idle for a
predetermined amount of time.

We recommend setting auto-suspend according
to your workload and your requirements for
warehouse availability:

• If you enable auto-suspend for your dbt workload, we
recommend setting a more aggressive policy with the
standard recommendation being 60 seconds, because
there is little benefit from caching.

• You might want to consider disabling auto-suspend for
a warehouse if:

– You have a heavy, steady workload for
the warehouse.

– You require the warehouse to be available with no
delay or lag time. While warehouse provisioning is
generally very fast (for example, 1 or 2 seconds), it’s
not entirely instant; depending on the size of the
warehouse and the availability of compute resources
to provision, it can take longer.

If you do choose to disable auto-suspend, you should
carefully consider the costs associated with running a
warehouse continually even when the warehouse is
not processing queries. The costs can be significant,
especially for larger warehouses (X-Large, 2X-Large,
or larger.).

We recommend that you customize auto-suspend
thresholds for warehouses assigned to different
workloads to assist in warehouse responsiveness:

• Warehouses used for queries that benefit from caching
should have a longer auto-suspend period to allow for
the reuse of results in the query cache.

• Warehouses used for data loading can be suspended
immediately after queries are completed. Enabling auto-
resume will restart a virtual warehouse as soon as it
receives a query.

Multi-cluster warehouses handle the first case well
and scale out only when there are enough queries to
justify it. For the case where there is an unpredictable
amount of data in the queries, you usually have to
either wait longer for queries that look at larger data
sets or resize the entire warehouse, which affects all
clusters in the warehouse and the entire workload.

Snowflake’s Query Acceleration Service provides a
good default for the price-performance spectrum by
automatically identifying and scaling out parts of the
query plan that are easily parallelizable (for example,
per-file operations such as filters, aggregations, scans,
and join probes using bloom filters). The benefit is
a much reduced query runtime at a lower cost than
would result from just using a larger warehouse.

The Query Acceleration Service achieves this by
elastically recruiting ephemeral worker nodes to
lend a helping hand to the warehouse. Parallelizable
fragments of the query plan are queued up for
processing on leased workers, and the output of
this fragment execution is materialized and
consumed by the warehouse workers as a stream.
As a result, a query over a large data set can finish
faster, use fewer resources on the warehouse, and
potentially, cost fewer total credits than it would with
the current model.

What makes this feature unique is:

• It supports filter types, including joins

• No specialized hardware is required

• You can enable, disable, or configure the service
without disrupting your workload

This is a great feature to use in your dbt deployment
if you are looking to:

• Accelerate long-running dbt queries that scan a
lot of data

• Reduce the impact of scan-heavy outliers

• Scale performance beyond the largest warehouse size

• Speed up performance without changing the
warehouse size

Please note that this feature is currently managed
outside of dbt.

This feature is in private preview at the time of this
white paper’s first publication; please reach out to
your Snowflake representative if you are interested in
experiencing this feature with your dbt deployment.

WHITE PAPER 11

• If either the warehouse-level or account-level resource
monitor reaches its defined threshold, the warehouse is
suspended. This enables controlling global credit usage
while also providing fine-grained control over credit
usage for individual or specific warehouses.

• In addition, an account-level resource monitor does
not control credit usage by the Snowflake-provided
warehouses (used for Snowpipe, automatic reclustering,
and MVs); the monitor controls only the virtual
warehouses created in your account.

Considering these rules, the following are some
recommendations on resource monitoring strategy:

• Define an account-level budget.

• Define priority warehouse(s) including warehouses for
dbt workloads and carve from the master budget for
priority warehouses.

• Create a resource allocation story and map.

Figure 3 illustrates an example scenario for a resource
monitoring strategy in which one resource monitor is
set at the account level, and individual warehouses
are assigned to two other resource monitors:

Resource monitors

Resource monitors can be used by account
administrators to impose limits on the number of
credits that are consumed by different workloads,
including dbt jobs within each monthly billing
period, by:

• User-managed virtual warehouses

• Virtual warehouses used by cloud services

When these limits are either close to being reached
or have been reached, the resource monitor can send
alert notifications or suspend the warehouses.

It is essential to be aware of the following rules about
resource monitors:

• A monitor can be assigned to one or more warehouses.

• Each warehouse can be assigned to only one
resource monitor.

• A monitor can be set at the account level to control
credit usage for all warehouses in your account.

• An account-level resource monitor does not override
resource monitor assignment for individual warehouses.

Figure 3: Example scenario for a resource monitoring strategy

WAREHOUSE 3 WAREHOUSE 4WAREHOUSE 1 WAREHOUSE 2 WAREHOUSE 5

RESOURCE
MONITOR 2

RESOURCE
MONITOR 3

Credit quota = 5,000 Credit quota = 1,000 Credit quota = 2,500

Set for
the account

RESOURCE
MONITOR 1

Assigned to Assigned to

https://docs.snowflake.com/en/user-guide/resource-monitors.html

WHITE PAPER 12

time to suspend, even when the action is Suspend
Immediate, thereby consuming additional credits.

If you wish to strictly enforce your quotas, we
recommend the following:

• Utilize buffers in the quota thresholds for actions (for
example, set a threshold to 90% instead of 100%).
This will help ensure that your credit usage doesn’t
exceed the quota.

• To more strictly control credit usage for individual
warehouses, assign only a single warehouse to
each resource monitor. When multiple warehouses
are assigned to the same resource monitor, they
share the same quota thresholds, which may result in
credit usage for one warehouse impacting the other
assigned warehouses.

When a resource monitor reaches the threshold
for an action, it generates one of the following
notifications, based on the action performed:

• The assigned warehouses will be suspended after all
running queries complete.

• All running queries in the assigned warehouses will be
canceled and the warehouses suspended immediately.

• A threshold has been reached, but no action has
been performed.

Notifications are disabled by default and can be
received only by account administrators with the
ACCOUNTADMIN role. To receive notifications,
each account administrator must explicitly enable
notifications through their preferences in the web
interface. In addition, if an account administrator
chooses to receive email notifications, they must
provide (and verify) a valid email address before they
will receive any emails.

We recommend having well-defined naming
conventions to separate warehouses between hub
and spokes for tracking, governance (RBAC), and
resource monitors for consumption alerts.

Naming conventions

Your resource monitor naming conventions are a
foundation for tracking, allocation, and reporting.
They should follow an enterprise plan for the domain
(that is, function/market + environment). They
should also align to your virtual warehouse naming
convention when more granularity is needed.

In the example (Figure 3 on the previous page), the
credit quota for the entire account is 5,000 per
month; if this quota is reached within the interval, the
actions defined for the resource monitor (Suspend,
Suspend Immediate, and so on) are enforced for all
five warehouses.

Warehouse 3 performs ETL including ETL for dbt
jobs. From historical ETL loads, we estimated it can
consume a maximum of 1,000 credits for the month.
We assigned this warehouse to Resource Monitor 2.

Warehouse 4 and 5 are dedicated to the business
intelligence and data science teams. Based on their
historical usage, we estimated they can consume a
maximum combined total of 2,500 credits for the
month. We assigned these warehouses to Resource
Monitor 3.

Warehouse 1 and 2 are for development and testing.
Based on historical usage, we don’t need to place a
specific resource monitor for them.

The credits consumed by Warehouses 3, 4, and 5 may
be less than their quotas if the account-level quota is
reached first.

The used credits for a resource monitor reflect
the sum of all credits consumed by all assigned
warehouses within the specified interval. If a monitor
has a Suspend or Suspend Immediately action
defined and its used credits reach the threshold for
the action, any warehouses assigned to the monitor
are suspended and cannot be resumed until one of
the following conditions is met:

• The next interval, if any, starts, as dictated by the start
date for the monitor.

• The credit quota for the monitor is increased.

• The credit threshold for the suspended action
is increased.

• The warehouses are no longer assigned to the monitor.

• The monitor is dropped.

Resource monitors are not intended for strictly
controlling consumption on an hourly basis; they
are intended for tracking and controlling credit
consumption per interval (day, week, month, and
so on). Also, they are not intended for setting
precise limits on credit usage (that is, down to
the level of individual credits). For example, when
credit quota thresholds are reached for a resource
monitor, the assigned warehouses may take some

WHITE PAPER 13

USA_PRD_DATASCIENCE_ADHOC: A resource
monitor set to monitor and send alerts for just the
single production data science warehouse for the USA.

USA_PRD_SERVICE_WAREHOUSES: A resource
monitor set to monitor and send alerts for all
production services (for example, ELT, reporting tools,
and so on) warehouses for the USA.

Role-based access control (RBAC)

Team members have access only to their assigned
database and virtual warehouse resources to ensure
accurate cost allocation.

Monitoring
An important first step to managing credit
consumption is to monitor it. Snowflake offers
several capabilities to closely monitor resource
consumption.

The first such resource is the Admin Billing and Usage
page in the web interface, which offers a breakdown
of consumption by day and hour for individual
warehouses as well as for cloud services. This data
can be downloaded for further analysis. Figure 4
through Figure 6 show example credit, storage,
and data transfers consumption from the
Snowsight dashboard.

The following is a sample naming convention:

<domain>_<team>_<function>_<base_name>

<team>: The name of the team (for example,
engineering, analytics, data science, service, and so
on) that the warehouses being monitored have been
allocated to. When used, this should be the same
as the team name used within the names of the
warehouses.

<function>: The processing function (for example,
development, ELT, reporting, ad hoc, and so on)
generally being performed by the warehouses to be
monitored. When used, this should be the same as
the processing function name used within the names
of the warehouses.

<base name>: A general-purpose name segment to
further distinguish one resource monitor from another.
When used, this may be aligned with the base names
used within the names of the warehouses or it may
be something more generic to represent the group of
warehouses.

An example of applying the naming conventions above
might look something like this:

USA_WAREHOUSES: A resource monitor set to
monitor and send alerts for all warehouses allocated to
the USA spoke.

Figure 4: Example credit consumption from the Snowsight dashboard

WHITE PAPER 14

Figure 5: Example storage consumption from the Snowsight dashboard

Figure 6: Example data transfers consumption from the Snowsight dashboard

WHITE PAPER 15

This historical data can be used to build
advanced forecasting models to predict future
credit consumption. This trove of data is especially
important to customers who have complex
multiaccount organizations.

For admins who are interested in diving even deeper
into resource optimization, Snowflake provides the
account usage and information schemas. These tables
offer granular details on every aspect of account
usage, including for roles, sessions, users, individual
queries, and even the performance or “load” on each
virtual warehouse.

Monitoring credit usage

VIEW DESCRIPTION

METERING_DAILY_HISTORY Daily credit usage and rebates across all service types
within the last year

WAREHOUSE_METERING_HISTORY Hourly credit usage per warehouse within the last year

QUERY_HISTORY A record of every query (including SQL text), elapsed
and compute time, and key statistics

VIEW DESCRIPTION

DATABASE_STORAGE_USAGE_HISTORY Average daily usage (bytes) by database

TABLE_STORAGE_METRICS Detailed storage records for tables

Monitoring storage usage

https://docs.snowflake.com/en/sql-reference/account-usage/metering_daily_history.html
https://docs.snowflake.com/en/sql-reference/account-usage/warehouse_metering_history.html
https://docs.snowflake.com/en/sql-reference/account-usage/query_history.html
https://docs.snowflake.com/en/sql-reference/account-usage/database_storage_usage_history.html
https://docs.snowflake.com/en/sql-reference/account-usage/table_storage_metrics.html

WHITE PAPER 16

including the ability to forecast future usage. We
recommend sharing the account usage dashboards
offered by your customers’ preferred BI vendors to
help them gain visibility on their Snowflake usage
and easily forecast future usage. Figure 8 shows an
example from Tableau.²

dbt offers a package called the Snowflake spend
package that can be used to monitor Snowflake usage.
Refer to the dbt package section of this white paper
for more details.

Many third-party BI vendors offer pre-built dashboards
that can be used to automatically visualize this data,

Figure 7: Warehouse Load Over Time page

Figure 8: Tableau dashboard for monitoring performance

Warehouses in the web interface. As shown in Figure
7, the Warehouse Load Over Time page provides a bar
chart and a slider for selecting the window of time to
view in the chart.

The account usage and information schemas can be
queried directly using SQL or analyzed and charted
using Snowsight. The example provided below is
of a load monitoring chart. To view the chart, click

https://docs.snowflake.com/en/user-guide/warehouses-load-monitoring.html

WHITE PAPER 17

Snowflake supports resizing a warehouse at any
time, even while running. If a query is running slowly
and you have additional queries of similar size
and complexity that you want to run on the same
warehouse, you might choose to resize the warehouse
while it is running; however, note the following:

• As stated earlier, larger is not necessarily faster; for
smaller, basic queries that are already executing quickly,
you may not see any significant improvement after
resizing.

• Resizing a running warehouse does not impact queries
that are already being processed by the warehouse; the
additional compute resources, once fully provisioned,
are used only for queued and new queries.

• Resizing between a 5XL or 6XL warehouse to a 4XL or
smaller warehouse will result in a brief period during
which you are charged for both the new warehouse and
the old warehouse while the old warehouse is quiesced.

INDIVIDUAL DBT WORKLOAD ELASTICITY

Snowflake supports two ways to scale warehouses:

• Scale up by resizing a warehouse.

• Scale out by adding warehouses to a multi-cluster
warehouse (requires Snowflake Enterprise Edition
or higher).

Resizing a warehouse generally improves query
performance, particularly for larger, more complex
queries. It can also help reduce the queuing that
occurs if a warehouse does not have enough compute
resources to process all the queries that are submitted
concurrently. Note that warehouse resizing is not
intended for handling concurrency issues. Instead,
in such cases, we recommend you use additional
warehouses or use a multi-cluster warehouse (if this
feature is available for your account).

https://docs.snowflake.com/en/user-guide/intro-editions.html

WHITE PAPER 18

Figure 10: User resizes the warehouse to X-Large

subsequent queries are started on the newly
allocated virtual warehouse.

Note that if you start a massive task and amend the
warehouse size while the query is executing, it will
continue to execute on the original warehouse size.
This means you may need to kill and restart a large
running task to gain benefits of the larger warehouse.

Also note that it is not possible to automatically adjust
warehouse size. However, you could script the ALTER
WAREHOUSE statement to automate the process as
part of a batch ETL operation, for example.

Scaling up for performance

The purpose of scaling up is to improve query
performance and save cost. Let’s look at an example
to illustrate this.

A user running an X-Small virtual warehouse is
illustrated in Figure 9. The user executes an ALTER
WAREHOUSE statement to resize the warehouse to
X-Large, as shown in Figure 10.

As a result, the number of nodes increases from 1 to
16. During the resize operation, any currently running
queries are allowed to complete and any queued or

Figure 9: User running an X-Small virtual warehouse

WHITE PAPER 19

create table terabyte_sized_copy as
select *

from sample_data.tpcds_sf10tcl.store_sales;

The table below shows the elapsed time and cost for
different warehouses.

Let’s now look at some benchmark data. Below is a
simple query, similar to many ETL queries in practice,
to load 1.3 TB of data. It was executed on various
warehouse sizes.

T-SHIRT SIZE ELAPSED TIME COST (CREDITS)

X-Small 5	hours	and	30	minutes 5.5

Small 1 hour and 53 minutes 3.7

Medium 1 hour and zero minutes 4.0

Large 37 minutes and 57 seconds 5.0

XLarge 16 minutes and 7 seconds 4.2

2X-Large 7 minutes and 41 seconds 4.0

3X-Large 4 minutes and 52 seconds 5.1

4X-Large 2	minutes	and	32	seconds 5.4

Improvement 132	X Same

transformations, and querying. Previously, customers
who needed to support compute-intensive workloads
for data processing had to do batch processing and use
multiple 4XL warehouses to accomplish their tasks. The
new 5XL and 6XL virtual warehouse sizes give users the
ability to run larger compute-intensive workloads in a
performant fashion without any batching.

For a dbt workload, you should be strategic about
what warehouse size you use. By default, dbt will
use the warehouse declared in the connection. If you
want to adjust the warehouse size, you can either
declare a static warehouse configuration on the
model or project level or as a dynamic macro such as
the one shared in the Snowflake_utils package.

This allows you to automate selection of the
warehouse used for your models without manually
updating your connection. Our recommendation
is to use a larger warehouse for incremental
full-refresh runs where you are rebuilding a large
table from scratch.

Here are some interesting observations from the
table above:

• For a large operation, as the warehouse size increases,
the elapsed time drops by approximately half.

• Each step up in warehouse size doubles the
cost per hour.

• However, since the warehouse can be suspended after
the task is completed, the actual cost of each operation
is approximately the same.

• Going from X-Small to 4X-Large yields a 132x
performance improvement with the same cost. This
clearly illustrates how and why scaling up helps to
improve performance and save cost.

• Look at how compute resources can be dynamically
scaled up, down, or out for each individual workload
based on demand, and also suspend automatically to
stop incurring cost, which is based on per-second billing.

• New 5XL and 6XL virtual warehouse sizes are now
available on AWS and in public preview on Azure at
the time of this white paper’s first publication. These
sizes give users the ability to add more compute power
to their workloads and enable faster data loading,

https://docs.getdbt.com/reference/resource-configs/snowflake-configs#configuring-virtual-warehouses
https://docs.getdbt.com/reference/resource-configs/snowflake-configs#configuring-virtual-warehouses
https://hub.getdbt.com/montreal-analytics/snowflake_utils/latest/

WHITE PAPER 20

anticipates that there will soon be a dramatic change
in the number of users online. In Figure 12, the
customer executes an ALTER WAREHOUSE command
to enable the multi-cluster warehouse feature. This
command might look like:

alter warehouse PROD_VWH set

 min_cluster_count = 1

 max_cluster_count = 10;

Scaling out for concurrency

Multi-cluster warehouses are best utilized for scaling
resources to improve concurrency for users and
queries. They are not as beneficial for improving the
performance of slow-running queries or data loading;
for those types of operations, resizing the warehouse
provides more benefits.

Figure 11 illustrates a customer running queries
against an X-Small warehouse. The performance
is satisfactory, but in this example, the customer

Figure 11: Customer runs queries
against an X-Small warehouse

Figure 12: Customer executes an ALTER WAREHOUSE
command to enable the multi-cluster warehouse feature

Automatically Scale Out: 1 – 10 same size clusters

WRITING EFFECTIVE SQL STATEMENTS

To optimize performance, it’s crucial to write effective
SQL queries in dbt for execution on Snowflake.

Query order of execution

A query is often written is this order:

SELECT

FROM

JOIN

WHERE

GROUP BY

ORDER BY

LIMIT

The system will automatically scale out by adding
additional clusters of the same size as additional
concurrent users run queries. The system also will
automatically scale back as demand is reduced. As a
result, the customer pays only for resources that were
active during the period.

In cases where a large load is anticipated from a
pipeline or from usage patterns, the min_cluster
parameter can be set beforehand to bring all
compute resources online. This will reduce the delays
in bringing compute online, which usually happens
only after query queuing and only gradually with a
cluster every 20 seconds.

https://docs.snowflake.com/en/user-guide/warehouses-multicluster.html

WHITE PAPER 21

Joining on unique keys

Joining on nonunique keys can make your data output
explode in magnitude, for example, where each row in
table1 matches multiple rows in table2. Figure 14 shows
an example execution plan where this happens, wherein
the JOIN operation is the most costly operation.

Best practices for JOIN operations are:

• Ensuring keys are distinct (deduplicate)

• Understanding the relationships between your tables
before joining

• Avoiding many-to-many joins

• Avoiding unintentional cross-joins

The order of execution for this query in Snowflake
is shown in Figure 13 above. Accordingly, the
example above would execute in the following order:

Step 1: FROM clause (cross-product and
join operators)

Step 2: WHERE clause (row conditions)

Step 3: GROUP BY clause (sort on grouping
columns, compute aggregates)

Step 4: HAVING clause (group conditions)

Step 5: ORDER BY clause

Step 6: Columns not in SELECT eliminated
(projection operation)

SQL first checks which data table it will work
with, and then it checks the filters, after which it
groups the data. Finally it retrieves the data—and, if
necessary, sorts it and prints only the first <X> lines.

Applying filters as early as possible

As you can see from the order of execution, ROW
operations are performed before GROUP operations.
Thus, it’s important to think about optimizing ROW
operations before GROUP operations in your
query. It’s recommended to apply filters early at the
WHERE-clause level.

Querying only what you need

Snowflake uses a columnar format to store data,
so the number of columns retrieved from a query
matters a great deal for performance. Best practice is
to select only the columns you need. You should:

• Avoid using SELECT * to return all columns

• Avoid queries with SELECT long string columns or
SELECT entire variant column

Figure 13: The order of query execution

ROWS GROUPS RESULT

• FROM

• JOIN

• WHERE

• GROUP BY

• HAVING

• ORDER BY

• LIMIT

• SELECT

Figure 14: Example execution plan in which the JOIN is costly

WHITE PAPER 22

On the Snowflake layer, the account should be set up
with minimal separation of raw and analytics databases,
as well as with clearly defined production and
development schemas. There are different iterations of
this setup, and you should create what meets the needs
of your workflow. The goal here is
to remove any confusion as to where objects should
be built during the different stages of development
and deployment.

dbt developers should have control of their own
development sandboxes so they can safely build any
objects they have permissions to build. A sandbox often
takes the form of a personal schema to ensure that other
developers don’t accidentally delete or update objects.
To learn more, check out this blog post.

On the dbt layer, environment definitions consist of
two things: the connection details and a dbt concept
called target.

When setting up your connection, you provide a data
warehouse and schema. Those will be the default
Snowflake schema and database you will be building
objects into.

Meanwhile, how your target comes into play differs
slightly depending on the dbt interface you are using.
If you’re using the command line, the target is the
connection you wish to connect to (and thus the
default schema/database). You can also use the target
to apply Jinja conditions in your code, allowing you to
adjust the compiled code based on the target. If you're
using dbt Cloud, the target can be used only to apply
conditional logic; the default schema/database will be
defined in the environment settings.

As a best practice for development, the default schema
should be your sandbox schema, while for production,
the default should be a production schema. As a project
grows in size, you should define custom databases/
schemas either via hard-coding or via dynamic logic
using targets so that, depending on the environment
you’re working in, the database/schema changes to the
associated Snowflake environment.

When you combine environments with the ref
function, code promotion is dramatically simplified. The
ref function dynamically changes the object being

Avoiding complex functions and UDFs in
WHERE clauses

While built-in functions and UDFs can be
tremendously useful, they can also impact
performance when used in query predicates. Figure
15 is an example of this scenario in which a log
function is used where it should not be used.

OPTIMIZING DBT

dbt is a transformation workflow that lets analytics
engineers transform data by simply writing SQL
statements. At its core, the way it operates with
Snowflake is by compiling the SQL for Snowflake
to execute. This means you can perform all of your
data transformations inside of your data warehouse,
making your process more efficient because there’s
no need for data transference. You also get full access
to Snowflake’s extensive analytics functionalities,
now framed by the dbt workflow. In this section,
we discuss specific dbt best practices that optimize
Snowflake resources and functionalities. For broader
dbt best practices, check out this discourse post.

Use environments

Mitigate risk by defining environments in
Snowflake and dbt. Making use of distinct
environments may not be new in the world of
software engineering but definitely can be in the
world of data. The primary benefit of using clearly
defined production and development environments
is the mitigation of risk: in particular, the risk of
costly rebuilds if anything breaks in production.
With dbt and Snowflake, you can define cohesive
environments and operate in them with minimal
friction. Before even beginning development work in
dbt, you should create and strictly implement
these environments.

Figure 15: Example of using a log function inappropriately

https://discourse.getdbt.com/t/your-essential-dbt-project-checklist/1377
https://docs.getdbt.com/reference/dbt-jinja-functions/target
https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-custom-schemas
https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-custom-schemas
https://docs.getdbt.com/reference/dbt-jinja-functions/target#snowflake
https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://discourse.getdbt.com/t/your-essential-dbt-project-checklist/1377

WHITE PAPER 23

allows updating the logic only in one place. You can also
implement a variable in the logic to adjust the time period
specified in the WHERE clause (with a default date that
can be overridden in a run).

Here is sample code that allows you to call this macro
into a dbt model and add the WHERE clause when the
target is dev:

{% macro limit_in_dev(timestamp) %}

 -- this filter will only apply during a dev run

 {% if target.name == 'dev' %}

 where {{timestamp}} > dateadd('day',
-{{var('development_days_of_data')}}, current_date)

 {% endif %}

For larger projects, you can also use macros to limit
rebuilding existing objects. By operationalizing the
Snowflake Zero-Copy Cloning feature, you can ensure
that your environments are synced up by cloning from
another environment to stay up to date. This is fantastic
for developers who prefer to simply clone from an existing
development schema or from the production schema to
have all the necessary objects to run the entire project
and update only what is necessary. By putting this macro
into your project, you ensure that developers are writing
the correct DDL every time because all they have to do is
execute it rather than manually write it every time.

referenced based on the environment, without you
having to write conditional logic. This means that
when you select from a referenced object, dbt will
automatically know the appropriate schema and/or
database to interpolate.

This makes it possible for your code to never have
to change as it’s promoted from development to
production because dbt is always aware of the
underlying environment. Figure 16 (below) shows an
example of how a dbt model relates to a Snowflake
database. You can configure the dbt model
df_model to explicitly build into the Snowflake
df_{environment} every time or based on
conditional logic.

In addition to creating clearly defined environments,
there is an additional cost (and time) saving measure
that target makes possible. During development,
you may find that you often need only a subset of
your data set to test and iterate over. A good way
to limit your data set in this way is to implement
conditional logic to limit data in dev.

Such macros can automate when a filter is applied
and ensure only a limited amount of data is run.
This allows you to do away with the hassle of
remembering to apply and remove data limitations
through environments.

To more systematically apply this through a project,
a good practice is to put the conditional logic into a
macro and then call the macro across models. This

Figure 16: Example of how a dbt model relates to a Snowflake database

https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-variables
https://docs.snowflake.com/en/sql-reference/sql/create-clone.html
https://discourse.getdbt.com/t/creating-a-dev-environment-quickly-on-snowflake/1151
https://discourse.getdbt.com/t/creating-a-dev-environment-quickly-on-snowflake/1151
https://docs.getdbt.com/reference/dbt-jinja-functions/target#use-targetname-to-limit-data-in-dev

WHITE PAPER 24

Our recommendation is to start with eight threads
(meaning up to eight parallel models that do not
violate dependencies can be run at the same time), and
then increase the number of threads as your project
expands. While there is no maximum number of threads
you can declare, it’s important to note that increasing
the number of threads increases the load on your
warehouse, potentially constraining other usage.

The number of concurrent models being run is also
a factor of your project’s dependencies. For that
reason, we recommend structuring your code as
multiple models, maximizing the number that can be
run simultaneously.

As your project expands, you should continue to
increase the number of threads while keeping an
eye on your Snowflake compute. Hitting compute
limitations as you increase the number of threads may
be a good signal that it’s time to increase the Snowflake
warehouse size as well.

Figure 17 shows a sample dbt DAG. In this example,
if a user declared three threads, dbt would know to
run the first three staging models prior to running
dim_suppliers. By specifying three threads, dbt will
work on up to three models at once without violating
dependencies; the actual number of models it can work
on is constrained by the available paths through the
dependency graph.

USE THE REF() FUNCTION AND SOURCES

Always use the ref function and sources in
combination with threads.

To best leverage Snowflake’s resources, it’s important
to carefully consider the design of your dbt project.
One key way to do that is to ensure you are using the
ref()and source()functions in every dbt model,
rather than hard-coding database objects.

The ref function is a keystone of dbt’s functionality.
By using the function, dbt is able to infer
dependencies and ensure that the correct upstream
tables and views are selected based on your
environment. Simply put, it makes sense to always
use the ref function when selecting from another
model, rather than using the direct relation reference
(for example, my_schema.my_table).

When you use the ref function, dbt automatically
establishes a lineage from the model being
referenced to the model where that reference is
declared, and then it uses it to optimize the build
order and document lineage.

After the ref() function creates the directed acyclic
graph (DAG), dbt is able to optimally execute models
based on the DAG and the number of threads or
maximum number of paths through the graph dbt
is allowed to work on. As you increase the number
of threads, dbt increases the number of paths in the
graph that it can work on at the same time, thus
reducing the runtime of your project.

Figure 17: A sample dbt DAG

https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://docs.getdbt.com/docs/introduction#:~:text=dbt%20builds%20a%20directed%20acyclic,predecessor%20of%20the%20current%20model.
https://docs.getdbt.com/dbt-cli/configure-your-profile#understanding-threads

WHITE PAPER 25

administrative tasks such as grant statements, or they
can systemically remove deprecated objects.

In the past, during object creation, there often needed
to be a parallel administrative workflow alongside
development that ensured proper permissions were
granted on Snowflake objects. Today all of this can
be done via Snowflake GRANT statements. dbt adds
another layer of functionality here: It allows you to
take all your GRANT statements, ensure they are
run consistently, and version control them for simple
auditability.

See this example of a macro written to GRANT
statements. This macro, once implemented as a dbt
hook, ensures that the GRANT statements are run after
every dbt run, thus ensuring the right roles have access
to newly created objects or future objects.

Similarly, as projects grow in maturity, it’s common
for them to have deprecated or unused objects in
Snowflake. dbt allows you to maintain a standardized
approach for culling such objects, using macros
such as the one mentioned here. This allows you to
operationalize how you tidy up your instance and to
ensure that it is done on a schedule (via a dbt job).

Macros, in addition to making your SQL more flexible,
allow you to compartmentalize your Snowflake
administrative code and run it in a systematic fashion.

Sources work similarly to the ref() function, with
the key distinction being that rather than telling dbt
how a model relates to another model, sources tell
dbt how a model relates to a source object. Declaring
a dependency from a model to a source in this way
enables a couple of important things: It allows you
to select from source tables in your models, and it
opens the door to more extensive project testing and
documentation involving your source data. Figure 18
(below) shows a sample dbt DAG including a source
node. The green node represents the source table
that stg_tpch_nation has a dependency on.

WRITE MODULAR, DRY CODE

Use Jinja to write DRY code and operationalize
Snowflake administrative workflows.

dbt allows you to use Jinja, a Pythonic templating
language that can expand on SQL’s capabilities. Jinja
gives you the ability to use control structures and
apply environment variables.

Pieces of code written with Jinja that can be reused
throughout a dbt project are called macros. They
are analogous to functions in other programming
languages, allowing you to define code in one central
location and reuse it in other places. The ref and
source functions mentioned above are examples
of Jinja.

In addition to being helpful for environmental
logic, macros can help operationalize Snowflake

Figure 18: A sample dbt DAG including a source node

https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations#operations
https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations#operations
https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations
https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations
https://discourse.getdbt.com/t/clean-your-warehouse-of-old-and-deprecated-models-snowflake/1547
https://docs.getdbt.com/docs/building-a-dbt-project/using-sources
https://docs.getdbt.com/docs/building-a-dbt-project/jinja-macros

WHITE PAPER 26

to use the node selector state:modified to run
only models that have changes, which is much more
resource-efficient.

dbt Documentation ensures that your data team and
your data stakeholders have the resources they need
for effective data discovery. The documentation brings
clarity and consistency to the data models your team
ships, so you can collectively focus on extracting value
from the models instead of trying to understand them.

Every dbt model should be documented with a
model description and, when possible, a column-level
description. Use doc blocks to create a description in
one file to be applied throughout the project; these are
useful particularly for column descriptions that appear
on multiple models.

If you’re interested in documentation for the Snowflake
side, apply query tags to your models. These allow
you to conveniently tag in Snowflake’s query history
where a model was run. You can get as granular as
is convenient there, by either implementing model-
specific query tags that allow you to see the query run
attributed to a specific dbt model or by having one
automatically set on the project level, such as with the
following macro:

USE DBT TESTS AND DOCUMENTATION

Have at least one dbt test and one model-level
description associated with each model.

Robust systems of quality assurance and discovery
are key to establishing organizational trust in
data. This is where dbt tests and documentation
are invaluable.

dbt tests allow you to validate assumptions about
your data. Tests are an integral part of a CI/CD
workflow, allowing you to mitigate downtime and
prevent costly rebuilds. Over time, tests not only
save you debugging time, but they also help optimize
your usage of Snowflake resources so you’re using
them where they are most valuable rather than to fix
preventable mistakes.

We recommend that, unless there is a compelling
reason not to, every dbt model has a test associated
with it. Primary key tests are a good default, as failure
there points to a granularity change.

When you implement a CI/CD process, be sure to
use Slim CI builds for systemic quality checks. With
Slim CI, you don't have to rebuild and test all your
models; you can instead instruct dbt to run jobs on
only modified or new resources. This allows you

{% macro set_query_tag() -%}

 {% set new_query_tag = model.name %} {# always use model name #}

 {% if new_query_tag %}

 {% set original_query_tag = get_current_query_tag() %}

 {{ log("Setting query_tag to '" ~ new_query_tag ~ "'. Will reset to '" ~
original_query_tag ~ "' after materialization.") }}

 {% do run_query("alter session set query_tag = '{}'".format(new_query_tag)) %}

 {{ return(original_query_tag)}}

 {% endif %}

 {{ return(none)}}

{% endmacro %}

https://docs.getdbt.com/docs/building-a-dbt-project/documentation
https://docs.getdbt.com/docs/building-a-dbt-project/documentation#using-docs-blocks
https://docs.getdbt.com/reference/resource-configs/snowflake-configs#query-tags
https://docs.getdbt.com/docs/building-a-dbt-project/tests
https://docs.getdbt.com/docs/dbt-cloud/using-dbt-cloud/cloud-enabling-continuous-integration-with-github#slim-ci

WHITE PAPER 27

section). Doing this ensures that projects are aligned
in companywide definitions of, for example, what a
customer is, and it limits the amount of WET (write
every time) code.

BE INTENTIONAL ABOUT YOUR
MATERIALIZATIONS

Choose the right materialization for your current
needs and scale.

One of the easiest ways to fine-tune performance
and control your runtimes is via materializations.
Materializations are build strategies for how your dbt
models persist in Snowflake. Four materializations
are supported out of the box by dbt: view, table,
incremental, and ephemeral.

By default, dbt models are materialized as views.
Views are saved queries that are always up to date,
but they do not store results for faster querying later.
If an alternative materialization is not declared, dbt will
create a view. View materializations are a very natural
starting point in a new project.

As the volume of your data increases, however, you
will want to look into alternative materializations that
store results and thus front-load the time spent when
you query from an object. The next step up is a table
materialization, which stores results as a queryable
table. We recommend this materialization for any
models queried by BI tools, or simply when you are
querying a larger data set.

Incremental materialization offers a way to improve
build time without compromising query speed.
Incremental models materialize as tables in Snowflake,
but they have more-complex underlying DDL, making
them more complex configurations. They reduce build
time by transforming only what has been declared to
be a new record (via logic you supply).

In addition to the materializations outlined above,
you also have the option of writing your own custom
materializations in your project and then use them in
the same way as you would use materializations that
come with dbt. This enables you to declare the model
to be materialized as a materialized_view and
grants you the same abilities as maintaining lineage
with the ref function, testing, and documentation.

USE PACKAGES

Don’t reinvent the wheel. Use packages to help scale
up your dbt project quickly.

Packages can be described as dbt’s version of Python
libraries. They are shareable pieces of code that you
can incorporate into your own project to help you
tackle a problem someone else has already solved
or to share your knowledge with others. Packages
allow you to free up your time and energy to focus on
implementing your own unique business logic.

Some key packages live on the dbt Package Hub.
There, you can find packages that simplify things
such as:

• Transforming data from a consistently structured
SaaS data set

• Writing dbt macros that solve the question
“How do I write this in SQL?”

• Navigating models and macros for a particular tool
in your data stack

Every dbt project on Snowflake should have at least
the dbt_utils package installed. This is an invaluable
package that provides macros that help you write
common data logic, such as creating a surrogate key or
a list of dates to join. This package will help you scale
up your dbt project much faster.

If you’re using the Snowflake Dynamic Data Masking
feature, we recommend using the dbt_snow_mask
package. This package provides pre-written macros to
operationalize your dynamic masking application in a
way that’s scalable and follows best practices.

The snowflake spend package is another great
package that allows you to easily implement analytics
for your Snowflake usage. You can use it to model how
your warehouses are being used in detail, so you can
make sure you use only the resources you actually
want to use. We recommend using this package with
a job in dbt Cloud, so you can easily set up alerting in
case your usage crosses a certain threshold.

At larger organizations, it is not uncommon to
create custom internal packages that are shared
among teams. This is a great way to standardize
logic and definitions as projects expand across
multiple repositories (something we discuss in a later

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://docs.getdbt.com/docs/guides/creating-new-materializations
https://docs.getdbt.com/docs/guides/creating-new-materializations
https://hub.getdbt.com/
https://hub.getdbt.com/dbt-labs/dbt_utils/latest/
https://hub.getdbt.com/entechlog/dbt_snow_mask/latest/
https://hub.getdbt.com/entechlog/dbt_snow_mask/latest/
https://hub.getdbt.com/gitlabhq/snowflake_spend/latest/

WHITE PAPER 28

dbt project. Next, implement a “timebox” for testing
the upgrade and, if possible, require either every user
or a group of power users to upgrade to the latest
dbt version for a set amount of time (such as 1 hour.)

In that time, you should make clear there should
be no merges to production and users should
develop only on the updated version. If the test
goes smoothly, you can then have everyone on your
team upgrade to the latest version both in the IDE
and locally (or continue with their updated version,
as the case may be.) On the other hand, if for some
reason the test was not successful, you can make an
informed decision on whether your team will stay on
the newest release or roll back to the previous dbt
version, and then plan for the next steps to upgrade
at a later date.

CONCLUSION

Modern businesses need a modern data strategy
built on platforms that support agility, scalability, and
operational efficiency. dbt and Snowflake are two
technologies that work together to provide just such
a platform. They’re capable of unlocking tremendous
value when used together. Following the best
practices highlighted in this white paper allows you to
unlock the most value possible while minimizing the
amount of resources expended.

OPTIMIZE FOR SCALABILITY

Even when they start lean, dbt projects can expand
in scale very quickly. We have seen dbt projects with
about 100 models expand, with good reason, to
over 1,000 for large enterprises. Because of this, we
recommend the following approaches to help you
avoid issues down the line.

Plan for project scalability from the outset

Being proactive about project scalability requires
that you have a good understanding of how your
team members work with each other and what your
desired workflow looks like. We recommend reading
this Discourse post as an overview of factors and
then considering what options are right for
your team.

Generally speaking, we recommend maintaining the
mono-repository approach as long as possible. This
allows you to have the simplest possible git workflow
and provides a single pane through which to oversee
your project.

As your project and data team scale, you may want
to consider breaking the project up into multiple
repositories to simplify the processes of approval and
code promotion. If you do this, we recommend you
make sure your Snowflake environments are aligned
with this approach and there is a continual, clear
distinction regarding what project, git branch, and
users are building into which Snowflake database
or schema.

Follow a process for upgrading dbt versions

One of the ways teams get caught off guard is by not
establishing how they plan to go about upgrading dbt.
This can lead to teams deciding to forgo upgrading
entirely or to different team members having
different versions, which has downstream effects on
which dbt features can be leveraged in the project.
Being on top of upgrading your dbt version ensures
you have access to the latest dbt functionality,
including support for new Snowflake features.

Our recommended method to upgrading dbt is to use
a timeboxed approach. You should start by reading
the necessary changelog and migration guides to get
a sense of what changes might be needed for your

https://discourse.getdbt.com/t/how-to-configure-your-dbt-repository-one-or-many/2121

WHITE PAPER 29

CONTRIBUTORS

Contributors to this document include:

• BP Yau
Senior Partner Sales Engineer, Snowflake

• Amy Chen
Partner Solutions Architect, dbt Labs

REVIEWERS

Thanks to the following individuals and
organizations for reviewing this document:

• Dmytro Yaroshenko
Principal Data Platform Architect, Snowflake

• Jeremiah Hansen
Principal Data Platform Architect, Snowflake

• Brad Culberson
Principal Data Platform Architect, Snowflake

• Azzam Aijazi
Senior Product Marketing Manager, dbt Labs

DOCUMENT REVISIONS

Date: September 2021
Description: First publication

WHITE PAPER

ABOUT SNOWFLAKE
Snowflake delivers the Data Cloud—a global network where thousands of organizations mobilize

data with near-unlimited scale, concurrency, and performance. Inside the Data Cloud, organizations
unite their siloed data, easily discover and securely share governed data, and execute diverse analytic
workloads. Wherever data or users live, Snowflake delivers a single and seamless experience across
multiple public clouds. Snowflake’s platform is the engine that powers and provides access to the

Data Cloud, creating a solution for data warehousing, data lakes, data engineering, data science, data
application development, and data sharing. Join Snowflake customers, partners, and data providers

already taking their businesses to new frontiers in the Data Cloud. Snowflake.com.

©2021 Snowflake Inc. All rights reserved. Snowflake, the Snowflake logo, and all other Snowflake product, feature and service names mentioned herein
are registered trademarks or trademarks of Snowflake Inc. in the United States and other countries. All other brand names or logos mentioned or used
herein are for identification purposes only and may be the trademarks of their respective holder(s). Snowflake may not be associated with, or be spon-
sored or endorsed by, any such holder(s).

1 bit.ly/3BqWt3T 2 tabsoft.co/2YcdJM3

ENDNOTES

ABOUT DBT LABS
dbt Labs was founded to solve the workflow problem in analytics, and created dbt to help.
With dbt, anyone on the data team can model, test, and deploy data sets using just SQL.

By applying proven software development best practices like modularity, version control,
testing, and documentation, dbt’s analytics engineering workflow helps data teams work

faster and more efficiently to bring order to organizational knowledge. Getdbt.com.

https://www.snowflake.com
http://bit.ly/3BqWt3T
http://tabsoft.co/2YcdJM3
https://www.getdbt.com/

